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Cargo transport: molecular motors navigate a complex
cytoskeleton
Jennifer L Ross1, M Yusuf Ali2 and David M Warshaw2

Intracellular cargo transport requires microtubule-based

motors, kinesin and cytoplasmic dynein, and the actin-based

myosin motors to maneuver through the challenges presented

by the filamentous meshwork that comprises the cytoskeleton.

Recent in vitro single molecule biophysical studies have begun

to explore this process by characterizing what occurs as these

tiny molecular motors happen upon an intersection between

two cytoskeletal filaments. These studies, in combination with

in vivo work, define the mechanism by which molecular motors

exchange cargo while traveling between filamentous tracks

and deliver it to its destination when going from the cell center

to the periphery and back again.
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Introduction
Cargo transport of organelles, secretory vesicles, and
protein complexes by tiny molecular motors is an essen-
tial intracellular process. The importance of this process is
emphasized by mutations to these motors lead to genetic
diseases such as amyotrophic lateral sclerosis [1], para-
palegia [2], and Griscelli syndrome type 1 [3]. Molecular
motors that drive cargo transport along the cytoskeletal
highway include myosins traveling along actin filaments
and kinesin and cytoplasmic dynein motors traveling on
microtubules (Figure 1). These motors share cargo trans-
port duties and face the challenge of maneuvering
through a complex cytoskeleton with numerous micro-
tubule and actin filament intersections. How thesemotors
navigate these obstacles and whether they work together
to assure that cargo reaches its final destination is still
unclear. In this review, we will highlight recent single
molecule in vitro experiments that characterize the trans-
port capacity of individual and small ensembles of mol-

ecular motors along constructed cytoskeletal networks.
We will discuss how these results contribute to our un-
derstanding of intracellular cargo transport in vivo.

Cargo transport and track switching
Both the secretory and endocytic pathways require that
vesicular cargo be transferred between actin and micro-
tubule tracks. Ideally, microtubules originate from an
organizing center near the nucleus and fan out with their
plus ends toward the cell periphery. Cargos (e.g. secretory
vesicles) carried by plus end directed kinesins are trans-
located along microtubules toward the cortex. Upon
reaching the dense cortical actin meshwork the cargo is
transferred to myosin Va for delivery to the cell mem-
brane (Figure 1). The overall actin polarity within the cell
cortex is directed with barbed or plus ends toward the cell
membrane, the direction to which myosin Va walks.

In the reverse direction, during endocytosis, vesicles may
be transported initially through the actin cortex by the
minus end directed myosin VI. Cargo is then handed-off
to minus end directed cytoplasmic dynein traveling on
microtubules (Figure 1). As described, cargo transport
involves switching between motor carriers and tracks at
actin filament–microtubule intersections as observed in
vivo for encapsulated viruses [4], melanosomes and per-
oxisomes [5!!,6!,7], vesicles (human epidermal growth
factor receptors HER2) [8!!], and endocytosed quantum
dots [9!].

Unlike the ideal actions outlined above, intracellular
transport is plagued with impediments to motion
brought about by the intracellular milieu and the motors
themselves. For example, multiple motor types are
known to be associated with individual cargos
(Figure 1). Are their cargo transport activities coordi-
nated or do these motors undergo a constant ‘tug of war’
[6!]? For example, Gross et al. [10] observed that the
velocity of melanosomes transported along microtubules
increases when the myosin Va is effectively inactivated
by a dominant negative construct. This result suggests
that kinesin-driven movement may be slowed by myosin
Va bound to the same melanosome. Kural et al. [5!!,6!]
observed GFP-tagged peroxisomes moving bidirection-
ally on microtubules, suggesting that both kinesin and
dynein are present and that for discrete periods of
motion only one of the motor types dominates. Bidirec-
tional excursions are the result of: (1) one of the motor
types winning the tug of war, or; (2) coordinated dis-
sociation of one motor type so that the opposite type can
power motion. Another impediment to motion is the
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cytoskeleton itself, which presents a crowded sea of
physical barriers to forward motion, such as crossing
filaments, associated proteins, or other motors with
bound cargo all of which may limit the cargo’s forward
motion.

Similar questions relate to the specific mechanism by
which the hand-off of cargo occurs at cytoskeletal track
intersections. Is it a coordinated process or a tug of war,
where the stronger or more numerous motor wins? Even
more simply, what does a single kinesin or dynein motor
do when it encounters a microtubule–microtubule inter-
section or when a myosin faces an actin–actin intersec-
tion? To understand how such motors maneuver through
the cytoskeleton, the molecular structure and in vitro
function of these molecular motors provide insight into
the physical constraints that limit their maneuverability.

Inherent motor properties crucial for cargo
transport
All three motor types described here (i.e. myosins, kine-
sins, and cytoplasmic dyneins) have two motor domains
that hydrolyze ATP and convert chemical energy into
force and motion. These two motor domains are highly
coordinated so that the molecule steps processively in a
hand-over-hand fashion, taking multiple steps before
diffusing away from its track [11!,12–14]. Although, a
single processive motor can, in principle, act as a cargo
transporter, it is more likely that several motors are
involved, assuring consistent intracellular cargo delivery.
For example, Vershinin et al. showed that multiple kine-
sin motors working together in vitro can carry cargo far
longer than a single motor [15!!]. On the contrary, recent
in vivo work suggests that only a single motor is actively
engaged at any one time since stepwise cargomovements,

42 Cell structure and dynamics

Figure 1

Cartoon representation of motor proteins and vesicular cargo transport in the cell. Myosin family motors, myosin Va (dark brown) and myosin VI (light
blue), walk along actin filaments (red) at the cortex. Myosin Va walks toward the F-actin plus end, which is oriented toward the membrane. Myosin VI
walks toward the minus end of F-actin, toward the cell interior. Microtubule-based motors include the kinesin family motors (orange) and cytoplasmic
dynein (violet). Kinesin motors walk to the plus ends of microtubules (green), which are oriented toward the actin cortex. Dynein motors walk toward
the minus end of the microtubule, which is located at the microtubule-organizing center (MTOC, green) near the cell nucleus (blue). F-actin and
microtubules cross at the cell cortex, as highlighted by black arrowheads (lower right). F-actin cross in the cortex, highlighted by the red arrowheads
(left). Microtubules can intersect other microtubules highlighted by the green arrowhead (center). Vesicular cargo (tan) can bind to myosin VI and
dynein to switch from actin-based to microtubule-based motion while being transported into the cell interior (lower left). Vesicles can bind kinesin and
myosin Va to switch from microtubule-based to actin-based motion in order to be transported to the cell cortex (lower right). Vesicles traveling on
microtubules can experience a tug of war from kinesin and dynein simultaneously bound (right).
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equaling the stride length of a single motor, were
observed inside cells [5!!,8!!,16]. This follows given
that two or more kinesin motors in vitro generate 4 nm
or less step sizes when simultaneously interacting with
the microtubule [17!]. However, single motor proces-
sivity is not an essential property for cargo transport
provided there are sufficient numbers so that one motor
remains in contact with the track at any point in time,
as demonstrated by several single-headed or non-pro-
cessive dimeric motors being able to transport cargo
[18–20].

Recent findings suggest that motor processivity can be
enhanced by the motor associating via a second binding
domain, protein, or protein complex. KIF1A uses a sec-
ond electrostatic binding domain to power single-headed
processivity [19]. Melanophilin is an accessory protein
that provides a tether for myosin Va motility [21]. Dynac-
tin is a large complex that can dock dynein and kinesin-2
to cargo and enhances processivity by tethering the
motors to the microtubule [22!]. These electrostatic
tethers effectively prevent the free motor from diffusing
away, allowing it to reattach and begin another processive
run.

Single molecule optical trapping and total internal reflec-
tion fluorescence microscopy studies have determined
the step size (more appropriately the stride length) for
these motors [11!,12,13,23,24,25!,26!]. For kinesin and
myosin Va, the step size is fairly constant (8 nm, kinesin;
36 nm, myosin Va) [11!,12,13,23], whereas cytoplasmic
dynein and myosin VI may have variable step sizes
(dynein, 4- 32 nm; myosin VI, 20–50 30 nm)
[14,24,25!,27]. These stride lengths reflect both the struc-
ture of the motor and the track upon which it steps. For
example, myosin Va and dynein dimerize at some dis-
tance from their individual motor domains, allowing the
motors to skip multiple binding sites on its track before
the lead motor domain completes its diffusive search and
binds to the track. The dimerization domain for myosin
Va is flexible enough so that the unbound leading head
can freely explore its diffusional space before attaching to
the actin filament [28!!,29!,30!]. Kinesin, on the contrary,
has a short link between the dimerization and motor
domains, resulting in a more compact structure and thus
less able to skip binding sites on the microtubule. These
properties impact these motors’ capacity to maneuver
through a cytoskeletal intersection.

Another crucial property is the motor’s maximum force
generation. Through optical trapping experiments, kine-
sin can generate stall forces of 5–8 pN [31,32], twice that
of myosin Va [33], and equal to or greater than cyto-
plasmic dynein [24,34,35]. These absolute forces may be
a factor in cargo transport if tug of wars are common, or
when cargos encounter intracellular obstacles that present
a load that may impede motion.

In vitro maneuvering through intersections
A recent series of experiments take a bottom-up approach
to build complexity by constructing a simple model of the
cytoskeleton on a glass coverslip. By adhering isolated
actin filaments and/or microtubules to form filament
intersections, one can observe how a single motor, or a
small ensemble of motors attached to a bead, navigates an
intersection (Figure 2).

Myosin Va at actin–actin intersections
Using this approach, Ali et al., determined that a single
myosin Va can deal with an actin–actin intersection
(Figure 2A) without hesitation [28!!]. In fact, 48% of
the time, a myosin Va molecule switched tracks, 37%
terminated at the intersection, while 15% crossover
[28!!]. Givenmyosin Va’s structure and large 36 nm stride
length, one might have expected a higher crossover
frequency assuming that myosin Va could easily step
over the 7 nm physical barrier presented by the intersect-
ing actin filament. A simple model was developed to
explain the result in which myosin Va’s inherent flexi-
bility allows the leading head to undergo a limited three-
dimensional, diffusive search [29!,30!]. It is assumed that
all monomers within range are equally attractive. The
intersecting filament presents four times as many mono-
mers within reach of the myosin head. Thus, the motor
chooses to switch filaments and turn more often than
crossing over (Figure 2A), which may account for the 50%
probability of melanosomes switching actin tracks in vivo
[7]. In fact, the motor’s flexibility is so great that it can
take up to a 1508 turn at an intersection and thus is easily
capable of switching filaments at a 708 angle created by
the ARP2/3 complex [28!!].

Myosin Va at actin–microtubule intersections
In this same study, Ali et al. also observed how myosin Va
deals with an actin–microtubule intersection [28!!]. Sur-
prisingly, myosin Va motors can switch from actin to
microtubules (Figure 2B). Once associated with the
microtubule, the myosin will diffuse along the microtu-
bule owing to an electrostatic interaction between the
positively charged surface Loop 2 on myosin Va and the
negatively charged tubulin E-hook. Ali et al. speculate
that this interaction may allow the myosin Va to effec-
tively pace along the microtubule, waiting to link up with
cargo being transported by kinesin. A more intriguing
possibility is that the myosin Va may enhance kinesin’s
cargo transport capacity through its electrostatic inter-
action with the microtubule and thus act as a tether
preventing the cargo from diffusing away from its track.

Kinesin and dynein at microtubule–microtubule
intersections
Two recent studies have examined how kinesins and
dyneins manage at microtubule–microtubule intersec-
tions. Using kinesin-coated beads, Vershinin et al.
observed that beads with three or more kinesins pause
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58% of the time at microtubule intersections with the
remaining 42% switching between microtubules after
deforming the microtubules [15!!]. Interestingly,
adding a very little tau, a microtubule-associated
protein (MAP), increased the switching probability to

91% without any detectable microtubule deformations.
This implies that tau, by blocking kinesin binding to
the microtubule, reduces the chance that multiple
kinesin motors will engage in a tug of war at the
intersection.
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Figure 2

Schematic diagram of in vitro assays with intersecting cytoskeletal filaments. Intersections have been created between two F-actin filaments, an F-
actin and a microtubule, and two microtubules. (A) For actin–actin intersections, recent studies have observed myosin Va not only switching most
frequently to the crossing filament but also passing over the intersecting F-actin (green). (B) The same study used the microtubule as an obstacle for
myosin Va stepping, but found myosin Va was able to bind and diffuse along microtubules. (C) An interesting feature of microtubule–microtubule
intersections is that they have ‘underpass’ and ‘overpass’ tracks. Single kinesins are able to transgress the intersection on the underpass track by
going under the overpass bridge. Dynein–dynactin was most likely to switch between microtubules. (D) Two studies of beads decorated with kinesin at
microtubule–microtubule intersections have shown that kinesin-coated beads switch frequently at the intersection. Dynein–dynactin-coated beads
were found to pause at the intersection at high motor density but pass or switch at low motor density.
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A second study by Ross et al. characterized the behavior of
single fluorescently labeled kinesin or dynein–dynactin
molecules at microtubule–microtubule intersections
[36!!]. Given the 25 nm microtubule diameter, a micro-
tubule–microtubule intersection creates an effective
underpass and overpass (Figure 2C). In fact, single kine-
sins make their way easily through intersections whether
traveling on the underpass or overpass microtubule,
suggesting that kinesin is small enough to squeeze
through the underpass (Figure 2C). However, dynein–
dynactin was less likely to pass but would more easily
switch from one microtubule to another at the intersec-
tion, reflecting dynein–dynactin’s larger size and flexible
nature. These authors then increased complexity of the
experiment by decorating beads with dynein–dynactin or
kinesin as did Vershinin et al. [15!!]. Interestingly, kine-
sin-decorated beads switch microtubules at intersections
much more frequently than single motors: approximately
66% of the time from an underpass and 33% of the time
from an overpass. These statistics were quite stable for all
decoration densities, in agreement with the results of
Vershinin et al. [15!!]. However, for dynein–dyanctin-
decorated beads, as the decoration density increases,
the percentage of beads that become moored at the
intersection increases (Figure 2D). In fact at the highest
dynein–dynactin concentrations, "100% of beads are
stuck at the intersection, no matter if starting from the
underpass or overpass microtubule. Since dynein–dynac-
tin may be used to tether organelles in the cell at places of
high microtubule density, this in vitro result may support
this biological role for dynein–dynactin [36!!].

Conclusions
With the advent of single molecule biophysical tech-
niques, the recent flurry of in vivo and in vitro studies
have provided significant insight to how molecular
motors manage to transport and deliver cargo within
the cell. However, many questions still remain that pose
experimental challenges. For example, in vitro studies
must build further complexity to characterize how cargo
with mixed populations of actin and microtubule-based
motors navigate through a well-defined three-dimen-
sional array of microtubules and actin filaments. Such
studies will help define the exchange and hand-off of
cargo that occurs at microtubule–actin filament inter-
sections near the cell cortex. If this is a coordinated
process, then understanding the modes by which these
motors are regulated will be crucial. This is not a trivial
matter, since regulation can occur by autoinhibition
[37!!,38,39!,40], motor–motor interactions [41,42], and
binding partners that exist either on the cargo or the
track itself [15!!,43]. Therefore, in vitro studies using
endogenous, membrane-encapsulated cargos or orga-
nelles would be extremely enlightening to determine
how motors and their regulating partners on cargo
behave at cytoskeletal intersections. For the most part,
in vivo studies have relied on the motion of the cargo to

infer the motors’ transport properties. The challenge
will be to correlate the dynamics of cargo movement
with that of the motor or motors themselves in real time.
Although the challenges are great, building complexity
in vitro and breaking down complexity in vivo will be the
key to answering an extremely difficult question: what is
involved in getting cargo within the cell from point A to
point B?
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